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Numerical renormalization-group calculations for similarity solutions and traveling waves
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We present a numerical implementation of the renormalization group (RG) for partial differential
equations, constructing similarity solutions and traveling waves. We show that for a large class of well-
localized initial conditions, successive iterations of an approximately defined discrete RG transformation
in space and time will drive the system towards a fixed point. This corresponds to a scale-invariant solu-
tion, such as a similarity or traveling-wave solution, which governs the long-time asymptotic behavior.
We demonstrate that the numerical RG method is computationally very efficient.

PACS number(s): 47.27.Gs, 64.60.Ak, 47.27.Qb

I. INTRODUCTION

Recently, renormalization-group (RG) theory has been
applied to a number of nonequilibrium physical systems
[1-10] without any statistical aspect, to study the long-
time or large-scale intermediate asymptotic behavior. In
particular, the important cases of similarity solutions
[1-9] u(x,t)=t " %f(xt P), or traveling-wave solutions
[10] u (x,t)=f (x —uvt) were treated. In all of these cases,
generically referred to as exhibiting intermediate asymp-
totics of the second kind [1], the exponents «, /3 or the ve-
locity v cannot be determined by simple dimensional
analysis or from conservation laws, but are determined
only by solving the full problem itself. Previous work
demonstrated that these exponents are the anomalous di-
mensions of the field theoretic RG, and may be calculated
using RG [2,3,11,12] to remove systematically divergent
or secular terms from a naive perturbation expansion.

Although RG is often formulated in connection with
perturbation theory, it is essentially nonperturbative and
has a direct geometrical interpretation, as Wilson showed
in the context of critical phenomena [13]. The purpose of
this present paper is to explore the long-time asymptotic
behavior of certain simple nonequilibrium systems within
this geometrical picture. We will see that the fixed points
of the appropriately defined RG transformation corre-
spond to scale-invariant solutions, such as similarity or
traveling-wave solutions. The simple numerical method
given here, which exploits this picture, extends the prac-
tical applicability of the RG to problems where there is
no small perturbation parameter, in contrast to our previ-
ous perturbative work.

Other numerical methods, based on rescaling and thus
closely related to the RG, have been applied to study,
e.g., finite time blow-up in the two-dimensional nonlinear
Schrédinger equation [14-16] and in axisymmetric
three-dimensional Euler dynamics [17]. Numerical RG
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methods, particularly Monte Carlo RG, are widely used
in equilibrium statistical mechanics to calculate equilibri-
um phase diagrams and anomalous dimensions [6].
Monte Carlo RG has also been applied to a particular
nonequilibrium system —the driven diffusive gas—to cal-
culate scaling exponents of the nonequilibrium steady
states [18].

We begin by considering numerical RG transforma-
tions to obtain self-similarity solutions. A RG transfor-
mation R, g, which depends on two parameters, a dilation
parameter b and an exponent /3, is defined on the space of
functions wu(x,t) at some arbitrary time ¢ by
u'(x,t)=Ry g{u(x,t)}. This transformation involves the
following three steps.

(1) Evolve the function u(x,t) forward over a finite
time, from ¢ to t'=bt, b> 1, using the governing partial
differential equation (PDE), and call the result %(x,t’).
This step is analogous to the block spin transformation
used in critical phenomena.

(2) Rescale x by defining x'=b"8Bx, so
a(x',t")=u(x'bPt").

(3) Rescale the function u itself by an amount
Z(b)=1u(0,t')/u(0,t), so that u'(x",t")=Z (b)u(x',t").

that

Thus, the resulting RG transformation yields u'(x,?)
=Z (b)u (bPx,bt). The basic idea is that any fixed point
u*=R{u*} corresponds to a similarity solution. For the
simple systems discussed in this paper, only one fixed
point exists, which is a stable attractor. We will see that
repeated iterations of the RG transformation drive the
function u to its fixed point value more rapidly than
straightforward time evolution for large times. The semi-
group property of this RG transformation (b >1):
Ry, 6Rb, 6= Rp b, .0 simply implies Z (b)=5b% or equiv-
alently a=d InZ /d Inb. The parameter 3 must be varied
to search for fixed points of this RG transformation,
which may not exist for arbitrary . For appropriate
values of B, after an infinite number of successive itera-
tions of the RG transformation defined above, the fixed
point u *(x,t) will be attained, if the initial conditions are
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in the basin of attraction of the fixed point, i.e., we have
u*(x,t)=b"*u(b"Px,b"™), as n-—>ow. By setting
b"=A/t, we find for any constant A4, u*(x,?)
=t %(xt " P), as t — 0, where ¢ is a scaling function to
be determined. In principle, the RG transformations out-
lined above—either continuous or discrete—can be im-
plemented in many different ways, but here we will use a
discrete formulation, which is more useful for numerical
applications.

II. NUMERICAL METHOD FOR
SIMILARITY SOLUTIONS

In our numerical implementation, we adopt a finite-
difference Euler scheme to discretize the continuous ver-
sion of the PDE at hand. We write t =iAt, x =jAx,
i=0.1,2,...,M, j=0.1,2,...,N, with At a time step
and Ax a mesh size. By simply evolving the PDE over a
short, finite time from ¢=t¢, to ¢t ,=bt, with
no=(b—1)t,/At time steps, we obtain a set of data
{u'(x =jAx,t;=bty)}. Step (2) is best realized by rescal-
ing the mesh size Ax, rather than by changing the discrete
sites j =0,1,2,...,N at each iteration. Thus, after one
iteration, the new mesh size is (Ax)1=b“BAx. Finally,
we implement step (3) by rescaling the whole discrete set
of data by a factor Z;(b)=u'(0,bty)/u(0,t,). Thus,
after the first RG iteration, a set of coarse-grained data is
obtained at fixed sites j:

uV(x,,t0)=2Z,(b)u’'(bPx,,bty) , 2.1)

with x, =j(Ax),, j =0,1,2,... . This data set will con-
stitute the new initial condition for the second RG itera-
tion. The time step At and the total number of time steps
ny=(b —1)t,/At are kept fixed through all the RG itera-
tions, so that after n RG iterations, we will have calculat-
ed the nth iteration

u™(x,,t0)=2Z,(b) -+ Z{(b)u'(b"Px,,b",) , (2.2)

where x,=j(Ax), with a rescaled mesh size
(Ax),=b""PAx. Thus, in our numerical RG transfor-
mation, the equation is always solved over a finite time
interval, and the system size N (Ax), continues to shrink
with the number of RG iterations increasing. This
behavior can be understood by noting that the limit
x/tPF—~0 in a  possible similarity solution
u (x,1)=t ~%(x /tP) can be realized by letting x (or mesh
size Ax)—0 and keeping ¢ fixed at a finite value, instead
of letting t — o« and keeping x fixed. Therefore, the nu-
merical RG method is conceptually different from direct
numerical integration (DNI), in which we simply evolve
the PDE over a very long ¢ and generally have to choose
a very large-size system.

In practice, a potential difficulty is the choice of pa-
rameter B. For the fixed point, B is determined by requir-
ing that, if the curve t%u (x,t) vs xt B s plotted, all the
data should collapse onto a single curve, namely the
universal scaling function ¢. A simple alternative is to
require that, if Inu (x =0,¢) vs Int is plotted, all the data
should lie on a straight line, enabling one to read off the
slope —a. In practice, the correct value S is selected in

the following way. Given an estimated interval for S,
Bi1<B<pB,, we calculate in the last RG iteration, the
slopes dlnu(x =0,t)/dInt at t=ty, a;, and at
t =bty, a,, respectively. For arbitrary values of B, the
difference between a; and a, should be a function of S,
ie., Aa=a,—a;=f(B). Only for certain B will Aa be
equal to zero. This is a typical root-finding problem, if
we regard f3 as the root of the function f. The appropri-
ate value of B=p* is then easily found using any given
root-finding algorithm. We have found this method to
converge rapidly, and still be faster than DNI.

The first example we consider is the so-called modified
porous-medium equation

o,u =DAul*t" (2.3)

where A represents a d-dimensional Laplacian, n is arbi-
trary, D=1 for d,u 20, and D =1+¢€ for d,u <0. This
problem has previously [5] been treated analytically using
the RG method, for € <<1. We have applied the numeri-
cal discrete RG transformation to several special cases,
including the problem of gravity-driven ground water
(n=1,d =2). For simplicity, we will take the Barenblatt
equation (n =0,d =1) to illustrate our basic ideas on nu-
merical RG. This equation describes the pressure u dur-
ing filtration of an elastic fluid in an elastoplastic porous
medium. For €70, the material exhibits hysteresis
and the diffusion decays anomalously with the
long-time asymptotics of the similarity form
u(x,t)~t =12+l f(xt =172 ) where the anomalous di-
mension is calculated using perturbative RG [6] to be
a=¢€/(2me)'*+0 ().
A simple, explicit, discrete scheme can be written as

u(j,i +1)=u(j,i)+DrAu(j,i) (2.4)

where u (j,i)=u(x =jAx,t =iAt), r=At/(Ax)? the

discrete Laplacian is
Au(j,D)=u(j+1,i)—2u(j,i)+u(j—1,i), (2.5)

and D=1 if Au(ji)=0, D=1+¢€ if Au(j,i)<0. The
condition for numerical stability Dr <1/2 must be im-
posed in this explicit scheme. The numerical values of
the parameters b, At, Ax are chosen in such a way as to
not only result in the quickest rate of convergence to the
true solution, but also to attain sufficient accuracy. Typi-
cal values of At and Ax are chosen as 0.01 and 2.0, re-
spectively, because a too-small value for r =At/(Ax)?
gives a high accuracy, but needs too large a number of
time steps n,, while a too large value for r (which still
satisfies the numerical stability condition) is not accurate
enough. Although, in principle, any value > 1 can be
chosen, we choose a dilation parameter b typically about
1.02. For too large a value of b, a large number of time
steps ny would be required, and the system would shrink
too quickly even after only a few number of RG itera-
tions [the mesh size at nth round is (Ax),=Ax/b"#).
For a very small b, a large number of RG iterations are
necessary to produce good enough accuracy, and this
takes too much computer time. Thus, we must adopt a
compromise between the number of RG iterations and
the size of the finite time interval used in each iteration.
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FIG. 1. The anomalous scaling exponent a as a function of
the number of numerical RG iterations N, in the case of €=1.0
for the Barenblatt equation. Shown is the convergence to the
exact value a=0.6975 for three different initial conditions with
comparable width: Lorentzian (filled circles), Gaussian (filled
squares), and top hat (filled triangles).

The typical number N of RG iterations is chosen as
100 = N =500, depending upon how accurate the solution
is required to be, while satisfying the condition for nu-
merical stability DAt /(Ax)% <1 even after N RG itera-
tions.

In Fig. 1 we show how the anomalous exponent a ex-
tracted from Z (b) varies with the number of RG itera-
tions N and converges to the value @ =0.6975 in the case
€=1.0, starting from different localized initial conditions,
where we have taken only a small number of time steps
n,. As we see, an advantage of our numerical RG is that,
even if we choose a very small number of time steps n,
(e.g., ng=10) in each RG iteration (an obviously poor ap-
proximation), after a sufficient large number of RG itera-
tions, the final result for the exponent « is still very accu-
rate.

For purpose of comparison, we also perform a conven-
tional DNI of the Barenblatt equation in d=1 and 2 di-
mensions using the same explicit scheme. We choose the
same initial conditions as in the numerical RG calcula-
tion, Ax=2.0 and At as large as possible, while satisfying
the numerical stability condition r =At/(Ax)*<1/2d.
We compare both CPU times consumed on the same
computer and the total number of iterations performed so
that the same accuracy of the solution (e.g., the same rel-
ative error) is reached.

Suppose that the number of time steps taken to have
the same accuracy is n; and n,, respectively, in the DNI
and the numerical RG method, and the number of RG
iterations is N. An initial condition with compact sup-
port will be nonzero at most over n+ 1 additional spatial
grid points after the nth time iteration. Therefore, the to-
tal number of iterations is estimated to be of order
N,=0(n¢{*!) and N,=0(Nng*!) for n,,n,>>1, re-
spectively, in d dimensions. If n,/n,>>1, then
N,>>N,, which implies that DNI is much slower than

the numerical RG method. To achieve this goal, we
choose N typically about 100-500, and n,, typically
about 20-50.

Depending upon the initial conditions, the explicit nu-
merical RG scheme is about 5-10 times faster than DNI
in d=1 dimension, and about 50—-100 times in d=2 di-
mensions, where the requisite accuracy is 1-2%. We
find that, in DNI, the more unsymmetrical and unsmooth
the initial conditions are, the more slowly the solutions
converge, especially when a very high accuracy is re-
quired. It is not unreasonable to expect that our numeri-
cal RG method will be about several hundred times faster
than DNI in d=3 dimensions, with arbitrary, unsymme-
trical, localized initial conditions. Therefore, it seems
that the numerical RG method is computationally more
efficient than DNI of equation of motion, because the RG
transformation effectively coarse-grains uneven parts of
the initial data, and drives more quickly all the initial
conditions in its basin of attraction towards its fixed
point. Another advantage of our numerical RG method
is that, because only a small number of time steps and a
small size system are needed, there is no difficulty at all in
applying it to two- or three-dimensional systems, while if
DNI is used, in order to obtain a reasonably accurate
solution, a huge number of time steps and a large system
is required.

We have also applied this numerical RG to study the
universal behavior of the long-time asymptotics. We
choose a number of different initial conditions, suffi-
ciently localized and integrable, i.e., with f dx u(x,0)
=Q, bounded, such as a Lorentzian, step function, and
Gaussian, or even those initial distributions with a major
peak at origin and other minor multiple peaks elsewhere.
In all cases, as long as the initial conditions are well local-
ized, the numerical RG yields the same anomalous ex-
ponents and scaling functions for the long-time asymptot-
ic dynamics, although the rates at which they converge
are different. It is also found that the long-time asymp-
totic behavior is independent of specific numerical
schemes, explicit or implicit; nevertheless, the explicit
ones are less time consuming than the implicit ones, and
for this reason we prefer to adopt the explicit scheme in
all our simulations.

III. NUMERICAL METHOD
FOR TRAVELING WAVES

In this section, we present a numerical RG transforma-
tion for traveling waves interpolating between stable and
unstable states. In an earlier work, we applied a varia-
tional principle and perturbative RG to study the dynam-
ical velocity selection mechanism [10], where it was pro-
posed that physically relevant traveling-wave solutions
must be structurally stable in a precise sense.

We define a RG transformation R, , on the space of
functions u (x,t) at some time ¢ by u'(x,t)=R, , {u(x,?)},
depending on two parameters, a dilation parameter b and
a speed v. Two steps follow in this transformation: (1)
Evolve the function u (x,?) forward over a finite time,
from t to t'=(b +1)t, b>0, using the governing PDE,
and call the result u'(x,¢’). (2) Rescale x by defining
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x'=x +vbt, i.e., shifting x by an amount of displacement
v(t'—t)=vbt, where v must be varied to search for the
fixed point.

Unlike the similarity case, there is no need to rescale
the function u itself, because the rescaling factor Z(b) is
actually equal to 1. [This corresponds to the exponent
a=0 if we transform the traveling-wave form f(x —vt)
into the  similarity form T °f(XT™") by
T =Int,X =Inx]. Thus, we have

u'(x,t)=u(x +vbt,(b +1)t) . (3.1)

This transformation is useful in that any fixed point of
R, , is a traveling-wave solution. This RG transforma-
tion generates a semigroup (b > 0): Rbpvasz =Ry 4b,0
A fixed point will be reached, after an infinite number of
RG iterations, if the initial conditions are in the basin of
attraction of it, i.e.,

u*(x,t)=u(x +vnbt,(nb +1)t), (3.2)

n— o .

By translationally shifting the solution by an amount
v(nb +1)t, we have u*(x,t)=u(x —vt), as n—> . As
we iterate this RG transformation, we must vary the un-
known velocity v to find the fixed point by requiring that
u(0,t)=u(d,t'), where t'=(1+0b)t, d =vy(t' —t)=v,bt,
and v, is the desired velocity. Only when the profile is
shifted back along the —x direction by an appropriate
displacement will the shifted solution coincide with the
original one. If we were to choose a velocity v larger (or
smaller) than v, then the solution would be overshifted
(or undershifted) back and u (vbt,¢’) would be smaller (or
greater) than u (0,7). We emphasize that this is complete-
ly different from DNI, in that during RG iterations the
unknown parameter v is being varied and we are taking
the coarse-grained data as our new initial conditions.

The numerical discretization procedure is almost iden-
tical with that for the similarity case. Due to discretiza-
tion, the number of grid sites by which we shift back to
rescale x must be an integer /, and we have to take a vary-
ing mesh size at each RG iteration, Ax =v/m with m a
large integer number, so that [ =vty/Ax =mt, is an in-
teger. Typically we choose 5</=<20 to guarantee a
sufficiently high accuracy of computation. Just as in the
similarity case, given an estimated interval for v,
vy <v <v,, a root-finding algorithm is used to pick out
the dynamically selected velocity v*, by regarding the
difference of u (x =0,¢;) in the last two RG iterations as
a function of v, Au (0,¢,)=f (v), and requiring f (v*)=0.

To illustrate how this discrete numerical RG transfor-
mation scheme works, we present Fisher’s generalized
population model [19],
du=3d2u+u(l—uw)1+vu), —15v<+ow, (3.3)
where u=0,1 are two steady-state points.

When v= —1, this equation reduces to the well-known
Fisher-Kolmogorov-Petrovsky-Piskunov equation [20],
for which rigorous results are known [21]. If the initial
condition u (x,t=0) is assumed to be well localized and
decays as fast as e ~ % for large x, then for g = 1, the front
velocity asymptotically approaches the value v=2, while
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FIG. 2. The propagation velocity v as a function of decay
rate ¢ of initial conditions. The points determined by the nu-
merical RG method are denoted by @. The continuous curve is
the exact result.

for g < 1, the asymptotic speed is v =q +1/¢>2. In Fig.
2, we show numerical RG calculations for the velocity v,
compared with the exact analytical result above. In do-
ing so, we take Az,Ax even as large as 0.05,1.0, respec-
tively, and use only a small number of grid points to
discretize t and x. Our simulation shows that the numeri-
cal RG transformation not only drives the solution to-
wards the fixed-point—traveling-wave solution more
quickly than DNI, but also uniquely determines the
correct velocity v. The typical relative error is only about
0.5% in this case.

Now we move on to the general case with
—1=<v=<+o. It is well established that in this case
there exists a transition, as the parameter v crosses the

-1.0 1.0 3.0 5.0 7.0 9.0

FIG. 3. The propagation velocity v plotted as a function of v.
The full curve represents the exact result, while data points
determined by our numerical RG are denoted by ®.
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transition point v, =2, and the corresponding velocity is
v=2for —1<v<2,and v =(2+v)/V2v for v>2. Start-
ing with sufficiently localized initial conditions [e.g., a
standard step function u(x,f=0)=06O(—x)], we have
performed the numerical RG simulation, and plot our re-
sults in Fig. 3, in comparison with the exact result. This
demonstrates that our numerical RG transformation does
predict a transition between linear-marginal-stability
(pulled) and nonlinear-marginal-stability (pushed) cases
and uniquely selects the correct front velocity for most
natural initial conditions.
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